Roll						Ser	ial	No.	of
No.						Q.	C.	А.	В.

ಒಟ್ಟು ಪ್ರಶ್ನೆಗಳ ಸಂಖ್ಯೆ : 58]

Total No. of Questions : 58]

[ಒಟ್ಟು ಮುದ್ರಿತ ಪುಟಗಳ ಸಂಖ್ಯೆ : 40

[Total No. of Printed Pages : 40

ಸಂಕೇತ ಸಂಖ್ಯೆ : 81-E

ವಿಷಯ : **ಗಣಿತ**

Code No. : 81-E

Subject : MATHEMATICS

(ಇಂಗ್ಲೀಷ್ ಭಾಷಾಂತರ / English Version)

ದಿನಾಂಕ : 08. 04. 2013] ಸಮಯ : ಬೆಲೆಗೆ 9.30 ದಿಂದ ಮಧಾ

ಸಮಯ : ಬೆಳಿಗ್ಗೆ 9-30 ರಿಂದ ಮಧ್ಯಾಹ್ನ 12-45 ರವರೆಗೆ] ಪರಮಾವಧಿ ಅಂಕಗಳು : 100]

[Date : 08 04. 2013 [Time : 9-30 A.M. to 12-45 P.M.

[Max. Marks : 100

Q. No.	Marks		Q. No.	Marks		Q. No.	Marks	Q. No.	Mark	s	Q. No.	Marks
1.			14.			27.		40.			53.	
2.			15.			28.		41.			54.	
3.			16.			29.		42.			55.	
4.			17.			30.		43.			56.	
5.			18.			31.		44.			57.	
6.			19.			32.		45.			58.	
7.			20.			33.		46.			×	
8.			21.			34.		47.			×	
9.			22.			35.		48.			×	
10.			23.			36.		49.			×	
11.			24.			37.		50.			×	
12.			25.			38.		51.			×	
13.			26.			39.		52.			×	
								To	otal	Maı	·ks	
Total Marks in words									Grand	Total		
1. 🗸												
2. 🗸							1			 Image: A start of the start of		
Signature of Evaluators			Regis	Registration No. Signature of the Signature of t			the Room					

FOR OFFICE USE ONLY

� 912130

2

General Instructions :

- i) The Question-cum-Answer Booklet consists of objective and subjective types of questions having 58 questions.
- ii) Space has been provided against each objective type question. You have to choose the correct choice and write the complete answer along with its alphabet in the space provided.
- iii) For subjective type questions enough space for each question has been provided.You have to answer the questions in the space.
- iv) Follow the instructions given against both the objective and subjective types of questions.
- v) Candidate should not write the answer with pencil. Answers written in pencil will not be evaluated. (Except Graphs, Diagrams & Maps)
- vi) In case of Multiple Choice, Fill in the blanks and Matching questions, scratching / rewriting / marking is not permitted, thereby rendering to disqualification for evaluation.
- vii) Candidates have extra 15 minutes for reading the question paper.
- viii) **Space for Rough Work** has been printed and provided at the bottom of each page.
- I. Four alternatives are given for each of the following questions / incomplete statements. Only one of them is correct or most appropriate. Choose the correct alternative and write the complete answer along with its alphabet in the space provided against each question. $20 \times 1 = 20$
 - 1. If *A*, *B* and *C* are non-empty sets then the 'Intersection of sets is distributive over union of sets' is represented as
 - (A) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (B) $A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$
 - (C) $(A \cup B) \cup C = (A \cap C) \cup (B \cup C)$
 - (D) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Ans. : ____

3

- 2. If 5 and 2 are the Arithmetic Mean and Harmonic Mean of two distinct numbers, then their Geometric Mean is
 - (A) 3 (B) 7
 - (C) $\sqrt{10}$ (D) 10.

Ans. : _____

3.	If $A + B = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 5 \end{bmatrix}$ and $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 2\\ 3 \end{bmatrix}$ then	n matrix <i>B</i> is
	(A) $\begin{bmatrix} 1 & 1 \\ 4 & 2 \end{bmatrix}$		(B)	$\left[\begin{array}{rrr}1&4\\1&2\end{array}\right]$
	(C) $ \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix} $		(D)	$\left[\begin{array}{rr} 4 & 2 \\ 1 & 1 \end{array}\right]$

Ans. : _____

4. If ${}^{n}C_{8} = {}^{n}C_{5}$, then the value of n is

(A)	2	(B)	3
(C)	1	(D)	13.

Ans. : _____

- 5. The H.C.F. of $5x^2y^3$ and $10x^3y^2$ is
 - (A) $10x^3y^3$ (B) $5x^2y^2$
 - (C) 5xy (D) $5x^3y^3$.

Ans. : _____

;		4
6.	The expansion of $\sum_{p,q,r} p^2$ is	
	(A) $p^2 q^2 r^2$	(B) pqr
	(C) <i>p</i> ²	(D) $p^2 + q^2 + r^2$.
Ans.	:	
7.	The value of $\sum_{a,b,c} a (b-c)$ is	
	(A) $2(ab + bc + ca)$	(B) $ab + bc + ca$
	(C) 0	(D) $a + b + c$.
Ans.	:	
8.	If one factor of $a^3 + b^3$ is ($a +$	\boldsymbol{b}), then the other factor is
	(A) $a^3 + b^3 + ab$	(B) $a-b+ab$
	(C) $a^2 + b^2 - ab$	(D) $a^2 + b^2 + ab$
Ans.	:	
9.	If $x\sqrt{y} = \sqrt{80}$, then the value of	y is
	(A) 5	(B) 16
	(C) 4	(D) 20.

5 81-E 10. The simplified form of $10 \frac{3}{\sqrt{\chi}} = 8 \frac{3}{\sqrt{\chi}}$ is (A) $18 \sqrt[3]{x}$ (B) $2\sqrt{x}$ $(C) 2 \sqrt{X}$ (D) $18\sqrt{x}$ Ans. : 11. If $4x = \frac{81}{x}$, then the value of x is (A) – 4·5 (B) ± 4.5 (C) 4·5 (D) ± 0.45 . Ans. : _____ 12. The quadratic equation having the roots $(2 + \sqrt{3})$ and $(2 - \sqrt{3})$ is (B) $x^2 + 4x - 1 = 0$ (A) $x^2 - 4x + 1 = 0$ (C) $x^2 - 4x - 1 = 0$ (D) $x^2 + 4x + 1 = 0$ Ans. : 13. If $3 \oplus y \equiv 2 \pmod{6}$, then the value of *y* is (A) 2 (B) 4 (C) 5 (D) 6. Ans. : 14. Out of the following sets, Z_4 is (A) $\{0, 1, 2\}$ (B) $\{0, 1, 2, 3\}$ (C) $\{0, 1, 2, 3, 4\}$ (D) $\{1, 2, 3, 4\}$ Ans. :

15. In \triangle *ABC*, *D* and *E* are the mid-points of *AB* and *AC* respectively, then the area of \triangle *ADE* is

(A)	$4 \Delta ABC$	(B)	$\frac{1}{4} \Delta ABC$
(C)	$2 \Delta ABC$	(D)	$\frac{1}{2} \Delta ABC.$

Ans. : _____

16. In the given figure, $XY \parallel BC$, then $\frac{AX}{BX}$ =

Ans. : _____

17. In $\triangle ABC$, $\angle ABC = 90^{\circ}$. If AC = (x + y) and BC = (x - y), then the length of AB is

(A)	$x^2 - y^2$	(B)	2xy
(C)	$2\sqrt{xy}$	(D)	$x^2 + y^2$

Ans. : ____

18. In the given figure, *AC*, *CE* and *EH* are tangents drawn to the circle at *B*, *D* and *F* respectively. If *CB* = 5 cm, and *EF* = 3 cm, then the length of *CE* is

Ans. : _____

19. The formula to find the coefficient of variation is

(A)	$\frac{\sigma}{\overline{X}} \times 100$	(B)	$\frac{\overline{X}}{\sigma} \times 100$
(C)	$\frac{\overline{X}}{100} \times \sigma$	(D)	$\frac{\sigma}{100} \times \overline{X}$

Ans. :

- 20. If the circumference of the base of a cylinder is 44 cm and height 20 cm, then its lateral surface area is
 - (A) 440 sq. cm (B) 880 sq.cm
 - (C) 88 sq.cm (D) 44 sq.cm.

Ans. : _____

81 <i>-</i> E	8	
II.	Fill in the blanks with suitable answers :	$10 \times 1 = 10$
	21. If A and B are the subsets of the universal set U then	
	$(A \cup B)^{\prime} = \dots$	
	Ans. :	
	22. If <i>A</i> is a matrix of order ($m \times n$) and <i>B</i> is a matrix of order ($n \times p$ <i>AB</i> is	p) then order of
	Ans. :	
	23. The value of ${}^n P_0$ is	
	Ans. :	
	24. Rationalising factor of $(\sqrt{x+y})$ is	
	Ans. :	
	25. The standard form of the quadratic equation is	
	Ans. :	
	(SPACE FOR ROUGH WORK)	

26. If the value of the discriminant of the quadratic equation $ax^2 + bx + c = 0$ is less than 0 then the nature of the roots is

9

Ans. : _____

27. If *R* and *r* are the radii of two circles having their centres *d* cm apart, then the length of the transverse common tangent *t* is

Ans. : _____

28. If the square on one side of a triangle is equal to the sum of the squares on the other two sides, then those two sides contain

Ans. : _____

29. The formula to find volume of a right circular cylinder is

Ans. : _____

30. Shape of each face of Dodecahedron is

Ans. : _____

2

III. 31. Which term of the Geometric Progression 2, $2\sqrt{2}$, 4, is 64 ?

32. Find the sum of the series $1 + 2 + 4 + \dots$ up to 9 terms.

[using the formula]

(SPACE FOR ROUGH WORK)

81*-*E

2

33. Three numbers are in harmonic progression. The harmonic mean between first and third numbers is 20. If the 1st number is twice the third number, find the three terms of the progression.2

2

- 35. (a) What is fundamental counting principle ?
 - (b) What is the meaning of ${}^n P_r$?

36. There are 3 white and 5 red roses in a basket. In how many ways can 4 flowers be removed from the basket so that they contain 2 red flowers?2

(SPACE FOR ROUGH WORK)

37. The H.C.F. and L.C.M. of two expressions are (a - 7) and

($a^3 - 10a^2 + 11a + 70$) respectively. If one of the expressions is

2

($a^2-12a+35$) , find the other.

38. Rationalise the denominator and simplify :

$$\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} \quad . \tag{2}$$

39. By selling an article for Rs. 18.75, a dealer loses as much per cent as its cost price. Find the cost price of the article.2

40. Solve the equation by using the fomula $x^2 - 8x + 1 = 0$. 2

- 20
- 41. What is a pure quadratic equation ? Give an example.

2

	21	81-E
42.	For what value of k the equation $kx^2 + 6x + 1 = 0$ has equal roots ?	2

43. Construct two tangents to a circle of radius 3.5 cm from a point 4.5 cm away from the circle.

44. *ABCD* is a rhombus. Prove that

$$AC^{2} + BD^{2} = 4AB^{2}$$
. 2

45. In the given figure, *TP* and *TQ* are tangents drawn to a circle with centre *O*. Prove that $\angle PTQ = 2 \angle OPQ$.

46. Draw a plan for the recordings from the Surveyor's field book given below :

	Metres to D	
	160	
	120	60 to C
To E 80	100	
	60	40 to B
	From A	

[Scale : 20 m = 1 cm]

(SPACE FOR ROUGH WORK)

2

� 912130

 $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}.$

2

27

48. Verify Euler's formula for the given solid.

IV. 49. In an examination 82% of the candidates passed in Maths, 72% passed in Science and 55% passed in both. Find the percentage of students failed in both.

3

(Draw Venn diagram to verify)

Class-interval	Frequency
0 – 4	2
5 – 9	3
10 – 14	10
15 – 19	3
20 - 24	2

50. Calculate the Mean and Standard Deviation for the following distribution : 3

(SPACE FOR ROUGH WORK)

◆ 912130

30

51. Find the L.C.M. of $x^3 - 2x^2 - 13x - 10$ and $x^3 - x^2 - 10x - 8$.

3

[Turn over

52. If a + b + c = abc, show that

$$\frac{a\left(b^{2}c^{2}-1\right)}{bc+1} + \frac{b\left(c^{2}a^{2}-1\right)}{ca+1} + \frac{c\left(a^{2}b^{2}-1\right)}{ab+1} = 2abc.$$
 3

53. If two circles touch each other externally, prove that their point of contact and their centres are collinear.3

(SPACE FOR ROUGH WORK)

54. Find the total surface area of a sphere whose volume is equal to the volume of the cone having the radius 12 cm and height 6 cm.

V. 55. In an Arithmetic progression the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that the 20th term is equal to – 112. 4

56. Two circles of radii 4 cm and 2 cm, have their centres 10 cm apart. Draw two direct common tangents and measure their length and write.

57. If two triangles are equiangular, prove that their corresponding sides are proportional.

(SPACE FOR ROUGH WORK)

4

- 58. Draw the graph of $y = x^2$ and y = 3 2x and hence solve the equation
 - $x^2 + 2x 3 = 0.$

◆ 912130

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE – 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಏಪ್ರಿಲ್ – 2013 S. S. L. C. EXAMINATION, APRIL, 2013

ಮಾದರಿ ಉತ್ತರಗಳು MODEL ANSWERS

ದಿನಾಂಕ: 08.04.2013]

Date : 08. 04. 2013]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 81-E code no. : 81-E

ವಿಷಯ : ಗಣಿತ

Subject : MATHEMATICS

[ಪರಮಾವಧಿ ಅಂಕಗಳು : 100

[Max. Marks : 100

Qn.	Letter of	Value Points	Mar	ks
Nos.	the answer		Allot	ted
I. 1.	A	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	1	
2.	С	$\sqrt{10}$	1	
3.	А	$\left[\begin{array}{rrr}1&1\\4&2\end{array}\right]$	1	
4.	σ	13	1	
5.	в	$5x^2y^2$	1	
6.	D	$p^2 + q^2 + r^2$	1	
7.	с	0	1	
8.	С	$a^2 + b^2 - ab$	1	
9.	А	5	1	
10.	С	$2\sqrt[3]{x}$	1	

(English Version)

81-E

Qn.	Letter of	Value Points	Ma	rks
NOS.	the answer		Allo	
11.	В	± 4.5	1	
12.	A	$x^2 - 4x + 1 = 0$	1	
13.	с	5	1	
14.	в	{ 0, 1, 2, 3 }	1	
15.	в	$\frac{1}{2} \Delta ABC$	1	
16.	D	$\frac{AY}{CY}$	1	
17.	с	$2\sqrt{xy}$	1	
18.	D	8 cm.	1	
19.	А	$\frac{\sigma}{X} \times 100$	1	
20.	в	880 sq.cm	1	
П.				
21.	A'∩1	3'	1	
22.	$m \times p$		1	
23.	1		1	
24.	$\sqrt{x+y}$		1	
25.	$ax^{2} +$	bx + c = 0	1	
26.	Imagin	ary	1	
27.	t =	$d^2 - (R+r)^2$	1	
28.	Right a	ungle (90°)	1	
29.	$V = \pi$	$r^2 h$	1	
30.	Regula	Regular pentagon.		

Qn. Nos.	Value Points	Ma Allo	rks tted
31.	$2, \ 2\sqrt{2}, \ 4, \ \ldots$		
	Here $a = 2$, $T_n = 64$		
	$r = \frac{2\sqrt{2}}{2} = \sqrt{2}$	$\frac{1}{2}$	
	$T_n = a.r^{n-1}$		
	$64 = 2 \cdot \left(\sqrt{2}\right)^{n-1}$	$\frac{1}{2}$	
	$\therefore \left(\sqrt{2}\right)^{n-1} = 32 \neg$		
	$2^{\frac{1}{2}(n-1)} = 32$	$\frac{1}{2}$	
	$2^{\frac{n-1}{2}} = 2^5$		
	$\therefore \frac{n-1}{2} = 5$		
	$\therefore n-1 = 5 \times 2$	$\frac{1}{2}$	
	$\therefore n-1 = 10$		
	$\therefore n = 10 + 1$		2
	\therefore $n = 11$		
32.	$1 + 2 + 4 + \dots$ up to 9 terms.		
	Here $a = 1$, $r = \frac{2}{1} = \frac{4}{2} = 2$		
	n = 9	$\frac{1}{2}$	
	$\therefore S_n = a \left\lfloor \frac{r^n - 1}{r - 1} \right\rfloor, r > 1$	$\frac{1}{2}$	
	$= 1 \left[\frac{2^9 - 1}{2 - 1} \right]$	$\frac{1}{2}$	
	$=\frac{256-1}{1}$		
	= 255.	$\frac{1}{2}$	2

[Turn over

3

0n	Value Points		
Nos.			tted
33.	Let the three terms in harmonic progression are <i>x</i> , <i>y</i> , <i>z</i> . $H = \frac{2ab}{a+b}$	$\frac{1}{2}$	
	Here $a = x = 2z$ b = z H = y = 20 $\therefore H = \frac{2 \times 2z \times z}{2z + z}$ $-\frac{4z^2}{3z} = \frac{4}{3}z$ $\therefore 20 = \frac{4}{3}z$ $\therefore 4z = 20 \times 3$	12	
	= 60 $\therefore z = \frac{60}{4} = 15$	$\frac{1}{2}$	
	$\therefore x = 2z = 2 \times 13 = 30$ $\therefore \text{The three terms are } 30, \ 20, \ 15.$	$\frac{1}{2}$	2
34.	The matrix obtained by interchanging rows into columns or columns into rows is called transposing of a matrix. Example $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	1	
	$\therefore \qquad A' = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$	1	2
	Note : Any suitable example may be considered.		
35.	a) If one event occurs in m different ways and another event occurs independently in n different ways then the two events together can be done in ($m \times n$) different ways. This is called fundamental counting principle.	1	
	b) ${}^{n}P_{r}$ means the number of permutations of <i>n</i> things taking <i>r</i> things at a time.	1	2

5	

Qn. Nos.	Value Points	Ma: Allor	rks tted
36.	There are 5 red flowers. The number of ways in which 2 flowers can be removed from 5 red flowers is ${}^{5}C_{2}$. Then remaining 2 flowers from 3 white flowers in ${}^{3}C_{2}$ ways.	$\frac{1}{2}$	
	$\therefore \text{ Total number of ways} = {}^{5}C_{2} \times {}^{3}C_{2} \\ = \frac{5 \times 4^{2}}{4 \times 1} \times \frac{3 \times 4}{4 \times 1}$	$\frac{1}{2}$	
	$= 10 \times 3$ $= 30$	$\frac{1}{2}$	2
37.	$H = (a - 7)$ $L = (a^{3} - 10a^{2} + 11a + 70)$ $A = (a^{2} - 12a + 35)$ $B = ?$ $A \times B = H \times L$ $\therefore B = \frac{H \times L}{A} = H \times \frac{L}{A}$ $\frac{L}{A} = \frac{a^{3} - 10a^{2} + 11a + 70}{a^{2} - 12a + 35}$ $\frac{a + 2}{a^{3} - 10a^{2} + 11a + 70}$	<u>1</u> 2	
	$\begin{array}{rcl} & a^{3} - 12a^{2} + 35a \\ (-) & (+) & (-) \end{array} \\ & & & \\ & &$	1	2
		[Turi	n over

Qn. Nos.	Value Points	Ma Allo	rks tted
38.	$\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}$		
	Rationalising factor of denominator is $\sqrt{5} + \sqrt{2}$	$\frac{1}{2}$	
	$\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} \times \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} + \sqrt{2}}$	$\frac{1}{2}$	
	$= \frac{(\sqrt{5} + \sqrt{2})^2}{(\sqrt{5})^2 - (\sqrt{2})^2}$		
	$= \frac{(\sqrt{5})^{2} + 2 \times \sqrt{5} \times \sqrt{2} + (\sqrt{2})^{2}}{5 - 2}$		
	$= \frac{5 + 2\sqrt{10} + 2}{3}$	$\frac{1}{2}$	
	$= \frac{7 + 2\sqrt{10}}{3}$	$\frac{1}{2}$	2
39.	Let the cost price be Rs. x		
	Selling price = Rs. 18.75		
	Loss = Cost price – Selling price		
	$\frac{x}{100} \times x = x - 18.75$	$\frac{1}{2}$	
	$\frac{x^2}{100} = x - 18.75$		
	$x^2 = 100x - 1875$		
	$\therefore x^2 - 100x + 1875 = 0$	$\frac{1}{2}$	
	(x - 75)(x - 25) = 0		
	$\therefore x = 75 \text{ or } x = 25$	$\frac{1}{2}$	
	The cost price is Rs. 75 or Rs. 25.	$\frac{1}{2}$	2
40.	$x^2 - 8x + 1 = 0$		
	Compare the equation with standard form		
	a = 1, b = -8, c = 1		

8	1	-	E	
C	4	• -	.	1

Qn. Nos.	Value Points	Ma Allo	rks tted
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\frac{1}{2}$	
	$= \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \times 1 \times 1}}{2 \times 1}$	$\frac{1}{2}$	
	$=\frac{8\pm\sqrt{64-4}}{2}$		
	$= \frac{8 \pm \sqrt{60}}{2}$	$\frac{1}{2}$	
	$=\frac{8\pm\sqrt{4\times15}}{2}$		
	$= \frac{8 \pm 2\sqrt{15}}{2}$		
	$=\frac{\cancel{2}(4\pm\sqrt{15})}{\cancel{2}}$		
	$= 4 \pm \sqrt{15} .$	$\frac{1}{2}$	2
41.	An equation that can be expressed in the form $ax^2 + c = 0$, where <i>a</i> and <i>c</i> are real numbers and $a \neq 0$ is a pure quadratic equation.		
	Or the quadratic equation having only second degree variable is called a pure quadratic equation	1	
	One example : $x^2 - 9 = 0$		2
	Note : Any suitable example may be considered.		
42.	$kx^2 + 6x + 1 = 0$		
	This is in the form $ax^2 + bx + c = 0$		
	Here $a = k$, $b = 6$, $c = 1$		
	$\Delta = b^2 - 4ac$	$\frac{1}{2}$	
	Since the roots are equal,		
	$b^2 - 4ac = 0 \qquad (\therefore \Delta = 0)$	$\frac{1}{2}$	
	$(6)^2 - 4 \times k \times 1 = 0$	$\frac{1}{2}$	
	36 - 4k = 0		
	4k = 36		
	$\therefore k = \frac{36}{4} = 9$		
	$\therefore k = 9$	$\frac{1}{2}$	2
		[Turi	n over

01	100
26 1	- HC

Qn. Nos.	Value Points	Marks Allotted
	In right angled $\triangle AOB$, $AOB = 90^{\circ}$	
	According to Pythagoras theorem, $AB^2 = AO^2 + BO^2$	$\frac{1}{2}$
	$= \left(\frac{1}{2}AC\right)^2 + \left(\frac{1}{2}BD\right)^2$	
	$= \frac{1}{4} AC^{2} + \frac{1}{4} BD^{2}$	$\frac{1}{2}$
	$\therefore AB^2 = \frac{1}{4} \left(AC^2 + BD^2 \right)$ $\therefore AC^2 + BD^2 = 4AB^2$	$\frac{1}{2}$ 2
45.		
	P O V Q T	
	$OP \perp PT$	
	$\therefore \ \ \angle OPT = 90^{\circ}$	$\left \begin{array}{c} \frac{1}{2} \end{array} \right $
	Let $\angle OPQ = x^{\circ}$	
	Similarly $\angle PQT = 90^\circ - x^\circ$	

9

Qn. Nos.	Value Points	Ma Allo	rks tted
	In $\triangle PQT$ $\angle PTQ + \angle QPT + \angle PQT = 180^{\circ}$ $\angle PTQ + 90^{\circ} - x^{\circ} + 90^{\circ} - x^{\circ} = 180^{\circ}$	1/2	
	$\angle PTQ + 180^\circ - 2x^\circ = 180^\circ$		
	$\therefore \angle PTQ = 2x^{\circ}$		
	$\therefore \ \ \angle PTQ = 2 \ \angle OPQ.$	$\frac{1}{2}$	2
46.	Scale 20 m = 1 cm		
	i) $\frac{160}{20} = 8 \text{ cm}$		
	ii) $\frac{120}{20} = 6 \text{ cm}$		
	iii) $\frac{100}{20} = 5 \text{ cm}$		
	iv) $\frac{60}{20} = 3 \text{ cm}$		
	v) $\frac{40}{20} = 2 \text{ cm}$		
	vi) $\frac{80}{20} = 4$ cm.	$\frac{1}{2}$	
		$1\frac{1}{2}$	2

Qn.	Value Points	Ma	rks
Nos.		Allo	tted
47.	A B C A 0 1 2 B 1 2 1 C 2 1 0	$\frac{1}{2}$	
48.		1 1/2	2
	Here $F = 5$ V = 5		
	E = 8	$\frac{1}{2}$	
	F + V = 5 + 5 = 10 (i)	$\frac{1}{2}$	
	E + 2 = 8 + 2 = 10 (ii)	$\frac{1}{2}$	
	From (i) and (ii) F + V = E + 2	$\frac{1}{2}$	2
49.	Number of candidates appeared for examination = $n(U) = 100$		
	Number of candidates passed in Maths = $n(M) = 82\%$		
	Number of candidates passed in Science = $n(S) = 72\%$		
	Number of candidates passed in both = $n (M \cap S) = 55\%$		

11

Gn. Nos.	Value Points				Ma Allo	rks tted			
	Total number of candidates passed = $n (M \cup S)$								
$n(M \cup S) = n(M) + n(S) - n(M \cap S)$								$\frac{1}{2}$	
			= 82%	+ 72% – 5	5%			$\frac{1}{2}$	
= 99%								$\frac{1}{2}$	
	$\therefore \text{ Number of failed candidates} = n (\cup) - n (M \cup S)$								
	=	100 - 99	9						
	=	1%						$\frac{1}{2}$	
		////	////	1/6/					
		M	ĽĽŲ	PR	$///\Lambda$				
		1	° (55%	6 17%					
		///		////					
				QQQ					3
50.									
	C.I.	f	x	fx	$x - \overline{x} = D$	D ²	fD^2		
	0 - 4	2	$\begin{vmatrix} 2 \\ -7 \end{vmatrix}$		- 10	100			
	5 - 9	3			- 5	25	75		
	10 - 14 15 - 19	10 3		51	5	25	75		
	20 - 24	2	22		10	100	200		
		N = 20		$\sum fx = 24$	0	$\sum f d$	$d^2 = 550$		
	<u> </u>					То	find \overline{X}	1	
	$\begin{vmatrix} & \Lambda & - & N \\ & & 240 \end{vmatrix}$					10			
	$=\frac{240}{20}$	$= \frac{240}{20}$ To find D^2					$\frac{1}{2}$		
	= 12	= 12 $\sum f D^2$					$\frac{1}{2}$		
	Standard deviation = $\sigma = \sqrt{\frac{\sum f D^2}{N}}$							$\frac{1}{2}$	
				550					
	$=\sqrt{\frac{333}{20}}$								
	$= \sqrt{27.5}$					1			
	= 5.24						2	3	

1	0
1	0
-	~

Qn. Nos.	Value Points		
51.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	$\therefore \text{ H.C.F.} = x^2 + 3x + 2 \qquad \text{To find HCF}$ $\therefore L = \frac{A \times B}{H}$ $= A \times \frac{B}{H} \text{ or } \frac{A}{H} \times B.$ $\frac{B}{H} = \frac{x^3 - x^2 - 10x - 8}{x^2 + 3x + 2}$ $x - 4$ $x^2 + 3x + 2 \qquad x - 4$ $x^3 - x^2 - 10x - 8$ $x^3 - x^2 - 10x - 8$ $x^3 - x^2 - 10x - 8$ x^{-4}	1 1/2	
	$\begin{array}{rcl} & & -4x^2 - 12x - 8 & & & \\ & -4x^2 - 12x - 8 & & \\ & -4x^2 - 12x - 8 & & \\ & & -4x^2 - 12x - 8 & & \\ & & (+) & (+) & & \\ & & (+) & (+) & & \\ & & & \\ \hline & & & \\ & & &$	$\frac{1}{2}$	3

Qn . Nos.	Value Points	Ma Allo	rks tted
	$L = \frac{A}{H} \times B$		
	$\frac{A}{H} = \frac{x^3 - 2x^2 - 13x - 10}{x^2 + 3x + 2}$		
	<i>x</i> – 5		
	$x^{2} + 3x + 2$ $x^{3} - 2x^{2} - 13x - 10$ $x^{3} + 3x^{2} + 2x$ $(-) (-) (-)$		
	$-5x^{2} - 15x - 10$ - 5x^{2} - 15x - 10 (+) (+) (+)		
	0 0 0		
	$\therefore \frac{A}{H} = (x-5)$		
	$\therefore L = (x-5) \left(x^3 - x^2 - 10x - 8 \right)$		3
52.	L.H.S. = $\frac{a(b^2c^2-1)}{bc+1} + \frac{b(c^2a^2-1)}{ca+1} + \frac{c(a^2b^2-1)}{ab+1}$		
	$= \frac{a(bc-1)(-be+1)}{-be+1} + \frac{b(ca-1)(ea+1)}{-ca+1} + b(ca-1)(ea+$		
	$\frac{c(ab-1)(ab+1)}{ab+1}$	$\frac{1}{2}$	
Í	= a (bc-1) + b (ca-1) + c (ab-1)	$\frac{1}{2}$	
	= abc - a + abc - b + abc - c	$\frac{1}{2}$	
	= 3abc - a - b - c	$\frac{1}{2}$	
	$= 3abc - abc \qquad [\therefore a + b + c = abc]$	$\frac{1}{2}$	
	= 2abc.	$\frac{1}{2}$	3

Qn. Nos.	Value Points	Ma	r k s tted
53.	R P B $fig.$	<u>1</u>	
	Data : Two circles with centres A and B touch each other at P externally.	$\frac{1}{2}$	
	To Prove : A, B and P are collinear.	Ż	
	Proof : $\angle APQ = 90^{\circ}$ (i) (Radius is perpendicular $\angle BPQ = 90^{\circ}$ (ii) to tangent)	$\frac{1}{2}$	
	Adding (i) and (ii)		
	$\angle APQ + \angle BPQ = 180^{\circ}$	$\frac{1}{2}$	
	$\therefore APB \text{ is a straight line}$	1	0
	A, B and P are collinear.	$\tilde{2}$	3
54.	Volume of sphere = volume of cone $4 - 2 - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3$	1 1	
	$\therefore \frac{1}{3} \pi r^3 = \frac{1}{3} \pi r^2 h$	$\frac{1}{2} + \frac{1}{2}$	
	$\frac{4}{3} \times \frac{22}{7} \times r^3 = \frac{1}{3} \times \frac{22}{7} \times 12 \times 12 \times 6$	$\frac{1}{2}$	
	$4 r^{3} = 12 \times 12 \times 6$ $r^{3} = \frac{1/2^{3} \times 12 \times 6}{4}$		
	$\therefore r^3 = 216$		
	$\therefore r = \sqrt[3]{216}$		
	r = 6 cm	$\frac{1}{2}$	
	Total surface are of a sphere = $4 \pi r^2$	$\frac{1}{2}$	
	$= 4 \times \frac{22}{7} \times 6 \times 6$		
	T.S.A. of a sphere = 452.57 sq.cm	$\frac{1}{2}$	3

15 **81-E**

Qn. Nos	Value Points	Ma: Allo	rks ted
55.	In an Arithmetic Progression $a = 2$		
	a + (a + d) + (a + 2d) + (a + 3d) + (a + 4d) =		
	$\frac{1}{4} \left[(a + 5d) + (a + 6d) + (a + 7d) + (a + 8d) + (a + 9d) \right]$	1	
	:. $5a + 10d = \frac{1}{4} [5a + 35d]$		
	Substitute $a = 2$		
	$5 \times 2 + 10d = \frac{1}{4} [5 \times 2 + 35d]$	$\frac{1}{2}$	
	$10 + 10d = \frac{1}{4} [10 + 35d]$		
	4 ($10 + 10d$) = $10 + 35d$		
	40 + 40d = 10 + 35d	$\frac{1}{2}$	
	$\therefore 40d - 35d = 10 - 40$		
	5d = -30	$\frac{1}{2}$	
	$\therefore d = \frac{-30}{5} = -6$		
	$\therefore d = -6$	$\frac{1}{2}$	
	20th term in A.P. = $a + 19d$	$\frac{1}{2}$	
	= 2 + 19 (~6)		
	= 2 + (-114)		
	= -112.	$\frac{1}{2}$	4
	$\therefore T_{20} = -112$		

Note : Any other correct method may be considered and for correct answer full marks may be given.

1	0
11	9
	\sim

